ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

CIM - Flexible Manufacturing System

Updated on July 1, 2017

A Flexible Manufacturing System (FMS) is a configuration of computer-controlled, semiindependent workstations where materials are automatically handled and machine loaded. An FMS is a type of flexible automation system that builds on the programmable automation of NC and CNC machines. Programs and tooling setups can be changed with almost no loss of production time for moving from production of one product to the next. Such systems require a large initial investment but little direct labor to operate.

Flexible Manufacturing System (FMS) is one of the tools used in Computer-Integrated Manufacturing or CIM.


Please click the link to read more about Computer-Integrated Manufacturing.



An FMS system has three key components:

1. several computer-controlled workstations, such as CNC machines or robots, that perform a series of operations

2. a computer-controlled transport system for moving materials and parts from one machine to another and in and out of the system

3. loading and unloading stations

Workers bring raw materials for a part family to the loading points, where the FMS takes over. Computer-controlled transporters deliver the materials to various workstations where they pass through a specific sequence of operations unique to each part. The route is determined by the central computer. The goal of using FMS systems is to synchronize activities and maximize the system’s utilization. Because automation makes it possible to switch tools quickly, setup times for machines are short. This flexibility often allows one machine to perform an operation when another is down for maintenance and avoids bottlenecks by routing parts to another machine when one is busy.

Figure K.2 shows the layout of a typical FMS, which produces turning and machining centers.1 Specific characteristics of this FMS include the following:

❐ The computer control room (right) houses the main computer, which controls the transporter and sequence of operations.

❐ Three CNC machines, each with its own microprocessor, control the details of the machining process.

❐ Two AGVs, which travel around a 200-foot-long oval track, move materials on pallets to and from the CNCs. When the AGVs’ batteries run low, the central computer directs them to certain spots on the track for recharging.

❐ Indexing tables lie between each CNC and the track. Inbound pallets from an AGV are automatically transferred to the right side of the table, and out-bound pallets holding finished parts are transferred to the left side for pickup.

❐ A tool changer located behind each CNC loads and unloads tool magazines. Each magazine holds an assortment of tools. A machine automatically selects tools for the next specific operation. Changing from one tool to another takes only 2 minutes.

❐ Two load and unload stations are manually loaded by workers; loading takes 10 to 20 minutes.

❐ An automatic AS/RS (upper right) stores finished parts. The AGV transfers parts on its pallet to an indexing table, which then transfers them to the AS/RS. The process is reversed when parts are needed for assembly into finished products elsewhere in the plant.

This particular system fits processes involving medium-level variety (5 to 100 parts) and volume (annual production rates of 40 to 2,000 units per part). The system can simultaneously handle small batches of many products. In addition, an FMS can be used a second way: At any given time, an FMS can produce low-variety, high-volume products in much the same way that fixed manufacturing systems do. However, when these products reach the end of their life cycles, the FMS can be reprogrammed to accommodate a different product. This flexibility makes FMS very appealing, especially to operations where life cycles are short.

Since the first FMS was introduced in the mid-1960s, the number installed worldwide has grown to almost 500, with about half of them either in Japan or the United States and the other half in Europe. A much more popular version of flexible automation is the flexible manufacturing cell (FMC), which is a scaled-down version of FMS that consists of one or a very small group of NC machines that may or may not be linked to a materials handling mechanism. The FMC doesn’t have a materials handling system controlled by a computer, which moves parts to the appropriate machines, as does the more sophisticated FMS.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)